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Abstract —The problem of an inductive strip in a finline cavity is solved

by applying the transverse resonance technique. The choice of accurate

basis functions for the slot field distributions has made possible an

accurate determination of inductive strip discontinuity parameters. The

computed resrdts are shown to match well with the experiments and also

with the experimental data available in the literature.

1. INTRODUCTION

T HE CHARACTERIZATION of finline discontinui-

ties has been a subject of considerable research inter-

est in recent years [1]–[5]. This is because an accurate

knowledge of the discontinuity parameters allows more

accurate design of practical finline circuits. Of the various

types of discontinuities encountered in practice, the induc-

tive strip is ‘an important one, especially for the realization

of the resonator elements and multiresonator filter circuits.

This type of discontinuity has been analyzed by using an

approximate equivalent rectangular waveguide model by

Saad and Schunemann [1] and by applying the rigorous

hybrid-mode spectral-domain approach developed by

Koster and Jansen [2]. Recently, Knorr and Deal [3] have

reported both theoretical and experimental results of the

scattering coefficients of an inductive strip in finline. Their

theoretical results are based on a spectral-domain analysis

of the finline cavity housing the strip discontinuity.

While the spectral-domain technique is rigorous, the

accuracy of the numerical results of the discontinuity

parameters depends to a large extent on the accuracy of

the choice of basis functions for the slot field distribution.

In this paper, we use the transverse resonance method [5]

to analyze the theoretical model of a finline cavity housing

an inductive strip. More importantly, accurate basis func-

tions have been chosen for the slot field distributions;

which have allowed a more accurate evaluation of strip

discontinuity parameters.

II. THEORETICAL ANALYSIS

Consider the model of a unilateral finline cavity with an

inductive strip discontinuity placed symmetrically with

respect to the two ends of the cavity. The cross-sectional

view of the unilateral finline and the conductive pattern on

the substrate are shown in Fig. 1.

In view of the symmetry of “the structure with respect to

the plane PP’, it is sufficient to analyze one half of the
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structure by placing an electric wall at PP’ for the odd-

mode excitation and a magnetic wall at PP’ for the

even-mode excitation. The expressions for the x compo-

nent of the electric and magnetic fields in the three regions

of the finline cavity are given by

E(’) = f f Amn,cos [rmn,(~ – h)]x
~=lm=l

.sin(a.y)sin(~~z) (la)

~=o~=o

.cos(any)cos(~mz) (lb)

EJ2) = ~ ~ [Amn2sin(rmn2x) + A2n2c0s(rmn2x)]
*=lm=l

.sin(a.y)sin(~~z) (lC)

H~2~ = ~ S [Bmn, cos (rm.,x) + %., sin (hzx)l
~=om=o

.Cos(any)cos(pmz) (id)

E.j3j = ~ E A~n3 cos[rmn1(x+d+h2)]
~=1~=1

.sin(aHy)sin(&z) (le)

H(3)= ~ ~ Bmn~sin [I’mnl(x+d+hz)]x
~=o~=()

.Cos(any)cos(pmz)

2n7r
an=—

b

and

— for electric wall at PP’
‘“= (1:s)

(if)

(2a)

(2b)

(2C)

(2d)

(2e)

2m+l T
.-( )2 “(1+s)

for magnetic wall at PP’. (2f)

The field equations given by (1) satisfy the boundary

conditions at the four boundary walls of the waveguide.
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Fig. 1. (a) Cross-sectional view of unilateral finline. (b) Pattern on the
substrate.

The y and z components of the electric and magnetic

fields can be derived easily by using (1) in Maxwell’s

equations. Next, by applying the boundary conditions at
x = () and x = – d, we obtain

r
A = ~ .Amnlsin(rmnlhl)mn2

r
(3a)

mn2

B mn2 = – %rzl sin (rmnlh) (3b)

A;nz = A~n2F1 (3C)

where

By applying the orthogonality condition to (5), the field

coefficients AnH1 and B~nl can be expressed in terms of

the slot field distributions. The expressions are

1 LYnPnQm L1mn + BmPmQn L2mn
A

‘*1= b(l+.s) “ rm.l sin (rmnl~l)

(7a)

and

1 ~.P.Q.L2mn – &lnQm&rnn
B=

‘“1 b(l+s) “
(7b)

.@Po sin (rmnlkl)

where

Pn,m =1 fern, m=() (7C)

=2 otherwise

Qn,m =0 fern, m=O (7d)

=2 otherwise.

L ~wn and L2m. are the transformed field components,

which are expressed in terms of the slot field distributions

as

Llmn=J’+’Jb/’~,(Yz)cos(~nY)sin(Bmz)dYdz(ga)
o – b/2

knn=~’+’~b/2 ~z(~>z)sin(~n~) cos(~mz)d~dz
o – b/2

(8b)

Nex< by applying ~he boundary condition, namely

– (H~# – ~~~) Xf = 1 at x = O, we obtain the following

~rrmnl sin (rmnzd) sin (rmn1h2) – rmn2cos (17mn2d ) cos (rmn1h2)
F1 =

~rrmnlcos (1’~n2d) sin (rmH1h2) + rmn2 sin (r~.2d) cos (rmn1h2)

rmnlcOs (rmn2d) cos (rmn1h2) – rmn2 sin (rmn2d) sin (rm.1~2)
Fz =

rmnl sin (rMn2d) cos (rm.,h2) + rmn2c0s (rm;2d ) sin (rmn1h2) -

The slot field components at x = O are obtained as

Ey(y, z) = – f i smn~
n= Om=l

. sin (rmnlhl) cos (a.y) sin(&z) (5a)

Ez(y, z) = – f f Cmnl
~=lm=o

.sin(r~.lhl) sin(any)cos(BMz) (5b)

where

(4a)

(4b)

coupled algebraic equations in terms of the transformed

fields:

~ ~ PnQ~G1lL1~n sin(&z) cos(a~y)
~=l)m=l

+ ~ ~ f’mQnG12L2mn sin (~rnz) COS (~n.Y)
~=om=l

=b. (l+.Y). Iy(y, z) (9a)

~ ~ PnQ~G21L1~n sin(amy) cos(~~z)
~=lm=()

+ f 5 PmQnG22L2mn Sin (~ny) cos (pmZ)
~=lm=o

=b. (l+s). Iz(y, z) (9b)
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where

jcocoff~

[

r

1
~ [rmnl.o,(rmn,h,) + rmH2F2,in(rmn1h,)]@ Sin(rmnlhl) – .

r
Cos (rmnlhl) – ‘rFl r

G,, =
m nl mn2 JUPO

(~~ + p~)sin(rmnl~l)
(lea)

.i~~o@m
[

r

r Cos(rmnlhl) – ‘rFl r
I

- [rmnlwrmd,) + rm,,2F2sin(rmMA)l~ sin(r~.lhl) + .

G12 =
mrd mn2 J@~O

(a; +@5k(rmn1h1)
(lOb)

G21 = G12 (1OC)

jtico~~

[

r

1
4 [rmnl@rmn,h,) + rmn2F2sin(rmn1hJ]--f@-sin(I’~.lhl) – jupo

r
Cos (rmnlhl) – ‘rFl r

G22 =
mnl mn2

(CXi +Bi)sin(rmnl~J

(lOd)

In (9), I,(Y, Z) and 1,( y, z) represent the y and z compo-
nents of’ the current density on the fins.

We now express L1~. and L2mn in terms of series of the
form

cow

L ll?m = E z ‘,,47’$ (ha)
~=oq=()

cow

~=oq=o

Next, application of the Ritz-Galerkin method followed

by the use of Parseval’s theorem in transformed domain

enables us to eliminate the fin current components lY and

1= from (9). We then obtain a linear system of homoge-

neous equations given by

p=oq =() ““n=om=l

‘2000 cow

(12a)

p=oq=o ‘ “n=lm=o

cow cow

i=o,l,2,. .,, co
(12b)

j=0,1,2,. ... co.

For a specific frequency, the dominant mode resonant
length Z= for the odd mode and 1~ for the even mode of

the cavity can be obtained by equating the determinant of

the coefficient matrix to zero for each of the two cases

separately.

From the equivalent circuit for the even- and odd-mode

cases given in Fig. 2, the resonant condition for the cavity

in terms of the normalized impedance parameters of a

symmetric discontinuity is given by

Y*+ jtan(&,)=O (13a)

and

.7,e+2X,h+ jtan(@~) =0. (13b)

It is assumed that only the dcminant mode propagates

in the finline section. In (13), /3 is the phase constant for

the dominant mode in finline. ~,, ( = X,./Zo) and ~,~

( = Xs~/Zo) are the normalized series and shunt imped-
ance parameters, respectively, of the equivalent T network

of the discontinuity, and 20 is the characteristic imped-

ance of the finline of slot width W.

III. SLOT FIELD DISTRIBUTION

The choice of the slot field distribution in the presence

of a discontinuity is rather critical for the evaluation of the

resonator lengths 1, and l~. In c~rder to take into account

the end effect due to the presence of the strip discontinu-

ity, the z-dependent basis functicm is chosen as a modified

sine distribution for the E,, component and a modified

cosine distribution for the ~, component. “ “” ““

tions are illustrated in Fig. 3. The y and z

the slot field distribution are expressed as

EY(y, z)=cfl(y).fl(z)

EZ(y, z)=df2(y).f2(z)

where

fl(Y) = [(WV- y2]-1/2, !.)’1< w/2

L(Y) = Y“ [(w/2)2- y2]”2,

2Tz

()
f,(z) =sin ~ ,

1nese ammxt-

components of

(14a)

(14b)

(15a)

IYI < w/2 (15b)

o<z<A’/4

A’/4 < z < I,, m (15C)

o<z<A’/4

~’/4 < Z < le, m. (15d)
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Fig. 2, Equivalent circuit of a symmetrical inductive strip in

cavity for (a) odd mode and (b) even mode excitations.
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Fig. 3. z-dependent slot field distributions in finline cavity.

Here c and d are unknown coefficients and A’ is the guide

wavelength of the dominant mode in finline.

It may be noted that as the septum width reduces to

zero, the z-dependent slot field distribution reduces to a

sinusoid.

IV. RESULTS

We first compute the guide wavelength A’ in finline by

considering the formulas for the odd-mode excitation and

setting the strip width equal to zero. The lowest resonant

length for a given frequency will then be equal to half the

Fig. 4.
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Equivalent circuit parameters of an inductive strip m unilateral
finline: waveguide = WR(90), 2s = 0.508 mm, c, = 1.0, wib = 0.25, and

hl =11.43 mm.

wavelength in the finline. Fig. 4 shows the plot of the

normalized guide wavelength A’/ A (where A is the free-

space wavelength) with frequency for different slot widths.

These computations were carried out by taking 50 terms

and also 100 terms in the series expansion of (12), and the
difference in the two results of A’/A was less than 0.5

percent.

Fig. 5 shows the plot of the computed values of equiv-

alent impedance parameters of an inductive strip as a

function of frequency at X-band. As the frequency in-

creases, the normalized shunt reactance ~~~ increases al-

most exponentially. This indicates that the coupling be-

tween two resonator sections is due to higher order

evanescent modes. In Fig. 6, the computed data on the

magnitude and phase of the reflection coefficient of the

inductive strip are compared with the theoretical and ex-

perimental results reported by Knorr and Deal [3]. The
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Fig. 6. Comparison of (a) magnitude and (b) phase of reflection coeffi-
cient of an inductive strip in unilateral finline with the results of Knorr

and Deaf [3]. Waveguide = WR(90), c, =1.0, 2s = 0.508 mm, wib =

0.25, and hl = 11.43 mm.

present theoretical results are better than those of Knorr

and Deal [3], mainly due the improved basis function

chosen for the z-dependent field distribution for the EY

component. Computations showed that inclusion of the E=

component in the slot field distribution has a negligible

effect on the results of resonant lengths. For example, the

numerical results of 1. and 1~ (expressed in mm) com-

puted with and without the E= component were found to

match up to the second decimal place.

Fig. 7 shows a comparison of theoretical and experimen-

tal results of the transmission coefficient of an inductive
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Fig. 7. Comparison of theoretical and experimental results of the trans-
mission coefficient of an inductive strip in unilateral finline: waveguide
= WR (90), c, = 2.22, 2s = 2.90 mm, w = 2.13 mm, and !-zI= 11.43 mm.

strip in finline with RT-duroid as dielectric substrate. For

experimental measurement, two finline sections of fixed

length, one with the inductive strip and other without,

were considered. The magnitude of the transmission coeffi-

cient was obtained from the cliff erence in the transmission

loss between the two finline sections as measured on the

network analyzer. The phase of the transmission coeffi-

cient was determined by subtracting the insertion phase of

the two sections and incorporating a correction due to the

physical length of the inductive strip.

V. CONCLtJSIONS

The modeling of inductive strip discontinuity in finline

has been carried out using the hybrid-mode analysis in

conjunction with the transverse resonance technique. It is

shown that an appropriate modification in the commonly

assumed sinusoidal distribution for the z-dependent basis

function allows an accurate characterization of the strip

discontinuity.
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