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Accurate Characterization of an
Inductive Strip in Finline

ANIMESH BISWAS, STUDENT MEMBER, IEEE, AND BHARATHI BHAT, SENIOR MEMBER, IEEE

Abstract —The problem of an inductive strip in a finline cavity is solved
by applying the transverse resonance technique. The choice of accurate
basis functions for the slot field distributions has made possible an
accurate determination of inductive strip discontinuity parameters. The
computed results are shown to match well with the experiments and also
with the experimental data available in the literature.

I. INTRODUCTION

HE CHARACTERIZATION of finline discontinui-

ties has been a subject of considerable research inter-
est in recent years [1]-[5]. This is because an accurate
knowledge of the discontinuity parameters allows more
accurate design of practical finline circuits. Of the various
types of discontinuities encountered in practice, the induc-
tive strip is an important one, especially for the realization
of the resonator elements and multiresonator filter circuits.
This type of discontinuity has been analyzed by using an
approximate equivalent rectangular waveguide model by
Saad and Schunemann [1] and by applying the rigorous
hybrid-mode spectral-domain approach developed by
Koster and Jansen [2]. Recently, Knorr and Deal [3] have
reported both theoretical and experimental results of the
scattering coefficients of an inductive strip in finline. Their
theoretical results are based on a spectral-domain analysis
of the finline cavity housing the strip discontinuity.

While the spectral-domain technique is rigorous, the
accuracy of the numerical results of the discontinuity
parameters depends to a large extent on the accuracy of
the choice of basis functions for the slot field distribution.
In this paper, we use the transverse resonance method [5]
to analyze the theoretical model of a finline cavity housing
an inductive strip. More importantly, accurate basis func-
tions have been chosen for the slot field distributions;
which have allowed a more accurate evaluatlon of strip
discontinuity parameters.

II. THEORETICAL ANALYSIS

Consider the model of a unilateral finline cavity with an
inductive strip discontinuity placed symmetrically with
respect to the two ends of the cavity. The cross-sectional
view of the unilateral finline and the conductive pattern on
the substrate are shown in Fig. 1.

In view of the symmetry of the structure with respect to
the plane PP’ it is sufficient to analyze one half of the
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structure by placing an electric wall at PP’ for the odd-
mode excitation and a magnetic wall at PP’ for the
even-mode excitation. The expressions for the x compo-
nent of the electric and magnetic fields in the three regions
of the finline cavity are given by

[o o] o
E)£1)= Z z Amnlcos[rmnl(x_hl)]

n=1m=1

in(,y)sin (6,) (1a)

HO= 5 5 B[]
cos(ay)cos(Bo) (1v)

EO= 3 % [Aprsin (Tyx) + Apcos(Tyav)]
i (s By (19

H(2)_ E Z [anZCOS(

n=0m=0
-cos(a,y)cos(B,z)
. E(3)~.— Z Z AmnBCOS[ mnl X+d+h2)]

n=1m=1

-sin(a,y)sin(B8,z)

H(S)_ Z Z an3511'1[
n=0m=0

05 (,7) 05 (B)

r n1=Vk§_ar:_Bri

n2x)+ an2 Sln( 1n2x)]

(1d)

(1e)
(X +d+ hy)]

(1f)
(2a)

T, =yk2, —a— B2 (2b)
2na 5
a, = b ( C)
ko= wjuqeo (2d)
and

mar ]

B,= 0+s) for electric wall at PP’ (2e)
2m+1 T
= . for magnetic wall at PP’. (2f)
2 (I+5)

The field equations given by (1) satisfy the boundary
conditions at the four boundary walls of the waveguide.
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Fig. 1. (a) Cross-sectional view of unilateral finline. (b) Pattern on the
substrate.

The y and z components of the electric and magnetic
fields can be derived easily by using (1) in Maxwell’s
equations. Next, by applying the boundary conditions at

x =0 and x = —~ d, we obtain
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where
el
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By applying the orthogonality condition to (5), the field
coefficients A4,,,, and B, can be expressed in terms of
the slot field distributions. The expressions are
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L., and L, . are the transformed field components,

which are expressed in terms of the slot field distributions
as
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Next, by applying the boundary condition, namely
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coupled algebraic equations in terms of the transformed
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In (9), I,(y, z) and L,(y, z) represent the y and z compo-
nents of the current density on the fins. and
We now express L,,,, and L,,,, in terms of series of the X, +2X,+ jtan(BL,) = 0. (13b)
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Next, application of the Ritz—Galerkin method followed
by the use of Parseval’s theorem in transformed domain
enables us to eliminate the fin current components I, and
I, from (9). We then obtain a linear system of homoge-
neous equations given by
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For a specific frequency, the dominant mode resonant
length [, for the odd mode and /,, for the even mode of
the cavity can be obtained by equating the determinant of
the coefficient matrix to zero for each of the two cases
separately. ‘

From the equivalent circuit for the even- and odd-mode
cases given in Fig. 2, the resonant condition for the cavity
in terms of the normalized impedance parameters of a
symmetric discontinuity is given by

X, + jtan(B1,) =0 (13a)

It is assumed that only the dominant mode propagates
in the finline section. In (13), B is the phase constant for
the dominant mode in finline. X,, (= X,./Z,) and X,
(=X, /Z,) are the normalized series and shunt imped-
ance parameters, respectively, of the equivalent T network
of the discontinuity, and Z; is the characteristic imped-
ance of the finline of slot width w.

III. SroT FIELD DISTRIBUTION

The choice of the slot field distribution in the presence
of a discontinuity is rather critical for the evaluation of the
resonator lengths /, and /,,. In order to take into account
the end effect due to the presence of the strip discontinu-
ity, the z-dependent basis function is chosen as a modified
sine distribution for the E, component and a modified
cosine distribution for the E, component. These distribu-
tions are illustrated in Fig. 3. The y and z components of
the slot field distribution are expressed as
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Equivalent circuit of a symmetrical inductive strip in finline
cavity for (a) odd mode and (b) even mode excitations.
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Fig. 3. z-dependent slot field distributions in finline cavity.

Here ¢ and d are unknown coefficients and X is the guide
wavelength of the dominant mode in finline.

It may be noted that as the septum width reduces to
zero, the z-dependent slot field distribution reduces to a
sinusoid.

IV. REsuLTS

We first compute the guide wavelength A’ in finline by
considering the formulas for the odd-mode excitation and
setting the strip width equal to zero. The lowest resonant
length for a given frequency will then be equal to half the
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Fig. 4. Dispersion characteristic of a unilateral finline: waveguide =
WR(28), ¢, =222, d =0.254 mm, and A; =3 556 mm
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Fig. 5. Equivalent circuit parameters of an inductive strip 1n unilateral
finline: waveguide = WR(90), 2s = 0.508 mm, ¢, =1.0, w/b = 0.25, and
hy=11.43 mm.

wavelength in the finline. Fig. 4 shows the plot of the
normalized guide wavelength N/A (where A is the free-
space wavelength) with frequency for different slot widths.
These computations were carried out by taking 50 terms
and also 100 terms in the series expansion of (12), and the
difference in the two results of X /A was less than 0.5
percent.

Fig. 5 shows the plot of the computed values of equiv-
alent impedance parameters of an inductive strip as a
function of frequency at X-band. As the frequency in-
creases, the normalized shunt reactance X, increases al-
most exponentially. This indicates that the coupling be-
tween two resonator sections is due to higher order
evanescent modes. In Fig. 6, the computed data on the
magnitude and phase of the reflection coefficient of the
inductive strip are compared with the theoretical and ex-
perimental results reported by Knorr and Deal [3]. The
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Fig. 6. Comparison of (a) magnitude and (b) phase of reflection coeffi-
cient of an inductive strip in unilateral finline with the results of Knorr
and Deal [3]. Waveguide = WR(90), ¢, =1.0, 25 =0.508 mm, w/b=
0.25, and A; =11.43 mm.

present theoretical results are better than those of Knorr
and Deal [3], mainly due the improved basis function
chosen for the z-dependent field distribution for the E,
component. Computations showed that inclusion of the E,
component in the slot field distribution has a negligible
effect on the results of resonant lengths. For example, the
numerical results of /, and /,, (expressed in mm) com-
puted with and without the E, component were found to
match up to the second decimal place.

Fig. 7 shows a comparison of theoretical and experimen-
tal results of the transmission coefficient of an inductive
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Fig. 7. Comparison of theoretical and experimental results of the trans-
mission coefficient of an inductive strip in unilateral finline: waveguide
=WR (90), ¢, = 2.22, 25 = 2.90 mm, w =2.13 mm, and s; =11.43 mm.

strip in finline with RT-duroid as dielectric substrate. For
experimental measurement, two finline sections of fixed
length, one with the inductive strip and other without,
were considered. The magnitude of the transmission coeffi-
cient was obtained from the difference in the transmission
loss between the two finline sections as measured on the
network analyzer. The phase of the transmission coeffi-
cient was determined by subtracting the insertion phase of
the two sections and incorporating a correction due to the
physical length of the inductive strip.

V. CONCLUSIONS

The modeling of inductive strip discontinuity in finline
has been carried out using the hybrid-mode analysis in
conjunction with the transverse resonance technique. It is
shown that an appropriate modification in the commonly
assumed sinusoidal distribution for the z-dependent basis
function allows an accurate characterization of the strip
discontinuity.
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